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Q-CHEM 2.0

ABSTRACT: Q-Chem 2.0 is a new release of an electronic structure program
package, capable of performing first principles calculations on the ground and
excited states of molecules using both density functional theory and wave
function-based methods. A review of the technical features contained within
Q-Chem 2.0 is presented. This article contains brief descriptive discussions of the
key physical features of all new algorithms and theoretical models, together with
sample calculations that illustrate their performance. c© 2000 John Wiley &
Sons, Inc. J Comput Chem 21: 1532–1548, 2000

Keywords: quantum chemistry; electronic structure; density functional theory;
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Introduction

A reader glancing casually at this article might
suspect on the basis of its title that it is a thinly

disguised piece of marketing for a program pack-
age. This is not the case. Rather, it is an attempt
to document the key methodologies and algorithms
of our electronic structure program package, Q-
Chem 2.0, in a complete and scientifically accurate
way, with full references to the original literature.
This is important for two principal reasons. First,
while the use of electronic structure programs is
burgeoning, many users of such programs do not
have much feel for the underlying algorithms that
make large-scale calculations routine even on such
readily available hardware as personal computers.
Therefore, a link between the program package and
the original literature that is written at the level of
an introductory overview can be a useful bridge.
Second, while citations of large-scale commercial
programs in published applications are tradition-
ally part of the conditions of use of such codes, they
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are “empty citations” in that there is nothing useful
that a reader may learn by looking up the citation.
Other public domain electronic structure programs
have provided helpful review articles (e.g., refs. 1
and 2), as have programs for molecular mechanics
(e.g., ref. 3). This article will serve as the official ci-
tation for Q-Chem 2.0, and as such is intended to
provide a summary of its capabilities that can pro-
vide useful information beyond a simple program
citation.

As background, the development of Q-Chem
commenced just before 1993, when one of the co-
founders, Prof. Peter Gill (Nottingham), then a post-
doctoral researcher with John Pople in Pittsburgh,
began to put together parts of the program while
on his Christmas vacation in New Zealand. Indeed,
Q-Chem’s early developers were a splinter group
from the scientific collaboration responsible for the
development of the Gaussian programs that grew
out of the Pople laboratory. The other cofounders
of Q-Chem were Dr. Benny Johnson, at that time a
graduate student in the Pople group, and Dr. Carlos
Gonzalez, then with the Pittsburgh Supercomputer
Center. Martin Head–Gordon, who had just taken
up an assistant professorship at the University of
California, Berkeley, joined the development effort
in May, 1993, together with his research group.
The first commercial release of the code, version
1.0, occurred in mid-1997, followed by version 1.1
in December 1997 and version 1.2 in September,
1998. John Pople’s research group (Northwestern)
joined the development effort in January 1999. The
new release described here is the joint effort of
Q-Chem employees, particularly Dr. Jing Kong, nu-
merous students and postdoctoral researchers in the
Gill, Head–Gordon, and Pople groups (a number of
whom now have academic positions), and several
independent contributors. Their names comprise
the author list of this article.
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To act as a bridge between readily avail-
able textbook information on electronic structure
methods4 – 6 and the state-of-the-art in electronic
structure algorithms requires considerable hetero-
geneity in the level of presentation. Standard meth-
ods that are well known in textbooks are very
briefly summarized, while new methods that of-
fer novel capabilities are discussed in more depth,
and in some cases selected numerical examples are
presented. Similarly, it is impossible to take a com-
prehensive approach to referencing, because we are
surveying a considerable part of electronic structure
theory. The focus is, therefore, on articles directly
relevant to Q-Chem’s methods and algorithms. Be-
cause there is a tremendous diversity of methods
included in Q-Chem, we also try to indicate very
roughly their extent of applicability. We place em-
phasis on a variety of newly developed capabilities.

We have chosen to organize this article around
the functional capabilities of the program. The very
first issue is the manner in which functions of a
single electron are represented, aspects of which
are summarized in the next section. This defines
the atomic orbital basis functions used to represent
orbitals, and their matrix elements. In the follow-
ing section, the methods and algorithms available
for describing the ground states of molecules by
self-consistent field methods (either Hartree–Fock
or density functional) are discussed. The often much
more expensive but systematic wave function-based
methods for describing the correlations between
electrons in the ground electronic state are the topic
of the Wave Function-Based Treatments section. In
the Excited State Methods section we turn from
molecular ground states to a discussion of the meth-
ods available in Q-Chem 2.0 for describing the tran-
sitions from ground to electronically excited states.
The techniques available for obtaining chemical in-
sight from electronic structure calculations are then
surveyed in Wave Function Analysis section. In the
Additional Capabilities Section, a selection of im-
portant additional capabilities of Q-Chem 2.0 are
summarized, including solvation modeling, rela-
tivistic energy corrections, geometry optimization
techniques, and user interfaces.

Basis Functions and Their
Matrix Elements

Q-Chem is entirely based on the use of con-
tracted Gaussian atomic orbital basis sets. Gaussian
basis sets are the most widely used form of spa-
tially localized basis functions because their special

properties permit analytical evaluation of all the
one- and two-electron matrix elements of the Hamil-
tonian. A contracted Gaussian basis function is, in
general, a linear combination of spherical Gaussian
functions centered on each atom, multiplied by an
angular function that is typically either a simple
product of powers of x, y, z, or linear combinations
thereof. Many standard Gaussian basis sets have
been developed, and a number of general reviews
of Gaussian basis sets are available.7 – 9 Q-Chem con-
tains a fairly comprehensive library of basis sets
built into the program, as well as the ability to in-
put other basis sets. In particular, all standard Pople
basis sets are available,9 including the most recent
extensions of the 6-31G∗ basis set for all elements up
to krypton.10 The systematic sequence of correlation
consistent basis sets of Dunning and coworkers11

are available up through quadruple zeta, as well as
Dunning’s earlier double and triple zeta basis sets.12

The modern Ahlrichs double and triple zeta basis
sets are also available.13 Alternatively, for the rare
situations where these internal basis sets are inade-
quate or inappropriate, general, user-supplied basis
sets can be entered as part of the job input.

For heavier elements, Q-Chem contains pseudo-
potentials that permit only the chemically relevant
valence electrons to be treated explicitly, while the
chemically inert core electrons are treated implic-
itly. A variety of standard pseudopotentials and
associated basis sets are available, as well as the
ability to input custom pseudopotentials. The stan-
dard pseudopotential basis sets were obtained from
the Pacific Northwest Laboratory database (as were
the all-electron Dunning and Ahlrichs basis sets dis-
cussed above.14 They are as follows: (1) Hay–Wadt
Minimal Basis,15 (2) Hay–Wadt Valence Double
Zeta;15 (3) lanl2dz (mimic of Gaussian’s lanl2dz);15

(4) Stevens–Bausch–Krauss–Jaisen–Cundari -21G;16

(5) CRENBL–Christiansen et al. shape consistent
large orbital, small core;17 (6) CRENBS–Christiansen
et al. shape consistent small basis large core;17 (7)
Stuttgart relativistic large core;18 (8) Stuttgart rela-
tivistic small core.19 We note that relativistic energy
corrections to all-electron calculations are also avail-
able in Q-Chem and are discussed separately in the
Additional Capabilities section.

One- and two-electron matrix elements involv-
ing contracted Gaussian basis functions are effi-
ciently evaluated in Q-Chem using the most recent
version20, 21 of the PRISM methods22 developed by
Gill and coworkers. PRISM is probably the most
efficient method available for evaluation of two-
electron Gaussian integrals. PRISM is a family of
algorithms, each of which is optimum for certain
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types of integrals, depending on the angular mo-
mentum and the degree of contraction (how many
primitive Gaussian integrals are combined together
to make the target contracted integral). For each
type of integral, the optimum method is chosen,
which accounts for the adaptability and efficiency of
the method. PRISM is employed both for Gaussian
integrals, and also their first and second derivatives,
as needed for analytical forces and vibrational fre-
quency calculations, respectively.

Recently, Adamson and Gill23 have extended
the capabilities of PRISM to permit fully analytical
treatment of integrals over pseudopotential oper-
ators of the form first proposed by Kahn et al.24

The new fully analytical approach is in contrast
to existing methods that employ numerical inte-
gration for at least some of the radial integrals
that arise in pseudopotential calculations.25 This has
considerable benefits in terms of execution speed,
as documented elsewhere.23 Analytical first deriv-
atives of pseudopotential matrix elements are also
implemented using the new approach, to enable ef-
ficient force calculations for heavier elements.

Finally, we note that Q-Chem contains “fast” al-
gorithms for linear scaling evaluation of the matrix
elements that arise in practical self-consistent field
calculations: they are discussed separately later. Ad-
ditionally, Q-Chem contains efficient routines for
transforming two-electron integrals from the atomic
orbital basis to various other representations: they
are discussed later in the section on local electron
correlation.

Ground-State Self-Consistent
Field Methods

The most inexpensive ab initio electronic struc-
ture methods are those that are based on only
a single determinant of molecular orbitals, which
may be generally described as self-consistent field
(SCF) methods. After a general overview, the spe-
cialized “fast methods” available in Q-Chem for
large-molecule SCF calculations are described.

CONVENTIONAL AND UNCONVENTIONAL
SELF-CONSISTENT FIELD METHODS

If the single determinant is viewed as a trial
wave function to be optimized via the variational
principle, the result is the Hartree–Fock (HF) the-
ory, in which each electron moves in the average
field of all the others.26 HF theory neglects the in-
stantaneous correlations between electrons, which

can be treated by the wave function-based meth-
ods described in the following section. As a result of
neglecting electron correlations, Hartree–Fock un-
derestimates the strength of chemical bonds, and
is usually poor for predicting reaction energies un-
less correlation energy is roughly constant between
reactants and products. HF theory is much more
successful for predicting molecular geometries and
vibrational frequencies.27

A very attractive alternative is the modern Kohn–
Sham density functional theory (DFT).28, 29 In DFT,
the single determinant is employed to parameter-
ize the electron density, and to evaluate the kinetic
energy. By the Hohenberg–Kohn theorem, which
states that the ground-state exchange and correla-
tion energy is a universal functional of the electron
density, these terms are evaluated as complicated
functional expressions. Q-Chem contains all popu-
lar standard density functionals, as well as the abil-
ity to input new ones within certain constraints on
the functional form. The best common DFT meth-
ods, exemplified by the B3LYP functional,30 yield
results for relative energies in particular, but also
often structural properties, which are greatly im-
proved over HF theory. Many reviews are now
available documenting the successes and limitations
of modern DFT.31 It is the most cost-effective elec-
tronic structure method available in Q-Chem, as it
contains much of the physics associated with elec-
tron correlation within a framework as simple as
mean field theory!

In addition to the established density functionals,
Q-Chem contains several newly developed func-
tionals. These take quite different approaches to
functional design. The Empirical Density Func-
tional 1 (EDF1) is specifically adapted to yield good
results with the relatively modest-sized 6-31+G∗ ba-
sis set, by direct fitting to thermochemical data.32 It
has the interesting feature that exact exchange mix-
ing was not found to be helpful with a basis set
of this size. A second even more recent functional
is the GG99 exchange functional,33 which is para-
meter free. This is accomplished by following an
approach first taken by the pioneers of the density
functional theory: choosing a model density and de-
riving a functional that is exact for the model. The
GG99 functional exactly reproduces the Hartree–
Fock (HF) gradient decomposition of the energy
for the model system. When coupled with the LYP
correlation functional, GG99 gives a mean absolute
deviation from experiment of 6.88 kcal/mol for the
G2 set of atomization energies.

Q-Chem evaluates not only SCF energies, but
also their analytical first and second derivatives,
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as needed for geometry optimizations and vibra-
tional frequency calculations, respectively. For large
molecules, the energies and gradients employ the
linear scaling methods discussed below for eval-
uation of all matrix elements. Matrix operations
are performed conventionally via dense linear al-
gebra routines that exhibit cubic scaling for the
energy evaluation. This is asymptotically the rate-
determining step for sufficiently large molecules,
and effectively sets the upper limit of feasible SCF
calculations in the range of several thousand ba-
sis functions, subject to the availability of sufficient
memory to manipulate the matrices. In practice, the
upper limit on calculations may be lower if geom-
etry optimization proves problematical, or if SCF
convergence difficulties are encountered. The linear
scaling methods for Fock matrix assembly become
faster than their conventional counterparts for sys-
tems of between roughly 15 and 50 first-row atoms,
depending upon the geometry of the molecule, and
the accuracy desired. Three-dimensional structures
exhibit later crossovers because of the larger num-
ber of average neighbors. Small-gap systems lead
to later crossovers for the linear scaling evaluation
of exact exchange because the electronic structure is
more delocalized.

Self-consistent field calculations are accelerated
by the standard method of direct inversion in the
iterative subspace (DIIS),34 and good-quality ini-
tial guesses are available by superposing spherically
averaged atomic densities in the target basis set.
While this combination works well in most stan-
dard cases, it is necessary to have fallback strategies
available for cases where convergence failures are
encountered. One difficulty that is occasionally en-
countered is the problem of an SCF that occupies
two different sets of orbitals on alternating itera-
tions, and therefore, oscillates and fails to converge.
This can be overcome by choosing orbital occupan-
cies that maximize the overlap of the new occupied
orbitals with the set previously occupied. How-
ever, this combinatorial matching problem has com-
putational complexity that scales factorially with
the number of occupied orbitals if implemented
straightforwardly. Q-Chem contains the maximum
overlap method (MOM),35 which, remarkably, re-
duces the combinatorial problem to cubic in the
number of orbitals.

Q-Chem also has other strategies available to
coax recalcitrant SCF calculations to convergence.
As an alternative to the conventional self-consistent
field procedure, Q-Chem includes direct minimiza-
tion methods that follow energy gradients to min-
imize the SCF energy. Additionally, if convergence

can be achieved in a smaller basis but not in a larger
basis, a novel procedure for evaluating the Fock op-
erator in a large basis set using a density matrix
obtained in a small basis set is available as an al-
ternative initial guess.36

Analytical frequency calculations are performed
by conventional direct methods by default,37 which
require no disk storage of two-electron integrals.
Still, relative to evaluating the SCF energy and
gradient, the computational cost of analytical fre-
quency calculations is high. The way in which the
cost scales with system size is roughly one power
of system size steeper than conventional SCF en-
ergies/gradients. Disk space and memory require-
ments both scale with the cube of system size, and
thus the largest calculations possible are a strong
function of the system resources available.

Q-Chem also contains an interesting unconven-
tional SCF method, in which the molecular orbitals
and the density matrix are not expanded directly
in terms of the basis of atomic orbitals. Instead, an
intermediate molecule-optimized minimal basis of
polarized atomic orbitals (PAOs) is used, ref. 38. The
polarized atomic orbitals are defined by an atom-
blocked linear transformation from the fixed atomic
orbital basis, where the coefficients of the transfor-
mation are optimized to minimize the energy, at the
same time as the density matrix is obtained in the
PAO representation. Thus, a PAO-SCF calculation
is a constrained variational method, whose energy
is above that of a full SCF calculation in the same
basis. However, a molecule-optimized minimal ba-
sis is a very compact and useful representation for
purposes of chemical analysis, and it also has po-
tential computational advantages in the context of
local MP2 calculations, as can be done after a PAO-
HF calculation is complete to obtain the PAO-MP2
energy.

PAO-SCF calculations tend to systematically un-
derestimate binding energies (because by defini-
tion the exact result is obtained for atoms, but
not for molecules). In tests on the G2 database,
PAO-B3LYP/6-311+G(2df,p) atomization energies
deviated from full B3LYP/6-311+G(2df,p) atomiza-
tion energies by roughly 20 kcal/mol, with the
error being essentially extensive with the number
of bonds.39 This deviation can be reduced to only
0.5 kcal/mol39 with the use of a simple nonitera-
tive second-order correction for “beyond-minimal
basis” effects.40 The second-order correction is eval-
uated at the end of each PAO-SCF calculation, as
it involves negligible computational cost. Analyti-
cal gradients are available using PAOs, to permit
structure optimization. For additional discussion of
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the PAO-SCF method and its uses, see the references
cited above.

LINEAR SCALING METHODS

Construction of the effective Hamiltonian, or
Fock matrix, has traditionally been the rate-deter-
mining step in electronic structure programs, due
primarily to the cost of two-electron integral eval-
uation, even with the efficient methods described
earlier. However, for large enough molecules, sig-
nificant speedups are possible by employing re-
cently developed linear-scaling methods for each
of the nonlinear terms that can arise. Linear scal-
ing means that if the molecule size is doubled,
then the computational effort likewise only dou-
bles. There are three computationally significant
terms: electron–electron Coulomb interactions, ex-
act exchange interactions, and exchange–correlation
functional evaluation, which we discuss in turn be-
low.

Electron–Electron Coulomb Interactions

The problem of electron–electron Coulomb inter-
actions involves a linear number of charge distrib-
utions interacting with themselves, which conven-
tionally requires quadratic effort via two-electron
integral evaluation. However, if a given pair of
charge distributions do not overlap, their interac-
tion can be evaluated via a multipole expansion
without explicitly doing the two-electron integral.
Charges that are nearby can be combined together
into collective multipoles to make the process of
doing these long-distance interactions still more
efficient. In fact, by collectivizing charge distribu-
tions into multipole and Taylor expansions based
on dividing space into a binary tree structure, it is
possible to evaluate all of these nonoverlapping in-
teractions in only linear scaling time, with no loss
of precision! This method for treating long-range
Coulomb interactions (where bra and ket functions
do not overlap) is called the Continuous Fast Multi-
pole Method (CFMM).41 So-called J matrix engines
treat short-range terms (in the regime where the bra
and ket basis functions are overlapping)42 by di-
rectly computing elements of the J matrix. The most
recent J matrix engine43 is approximately 10 times
faster than explicit integral evaluation at the level
of a quartet of uncontracted d shells, yet no approx-
imation is required. Speedups increase as angular
momentum increases. Additionally, the CFMM and
the J engine are also available for the Coulomb
force.44

Exact Exchange Interactions

Hartree–Fock calculations and the popular hy-
brid density functionals such as B3LYP also require
two-electron integrals to evaluate the exchange en-
ergy associated with a single determinant. There is
no useful multipole expansion for the exchange en-
ergy, because the bra and ket of the two-electron
integral are coupled by the density matrix, which
carries the effect of exchange. Fortunately, density
matrix elements decay exponentially with distance
for systems that have a HOMO-LUMO gap.45 The
better the insulator, the more localized the elec-
tronic structure, and the faster the rate of expo-
nential decay. Therefore, for insulators, there are
only a linear number of numerically significant con-
tributions to the exchange energy. With intelligent
numerical thresholding, it is possible to rigorously
evaluate the exchange matrix in linear scaling effort.
For this purpose, Q-Chem contains the linear scal-
ing K (LinK) method46 to evaluate both exchange
energies and their gradients47 in linear scaling ef-
fort (provided the density matrix is highly sparse).
The LinK method essentially reduces to the con-
ventional direct SCF method for exchange in the
small molecule limit (by adding no significant over-
head), while yielding large speedups for (very) large
systems where the density matrix is indeed highly
sparse.

Exchange–Correlation Functional Evaluation

Density functional methods require the evalu-
ation of exchange and correlation potentials that
are spatially local. In Q-Chem, this is accomplished
numerically by grid-based integration of the type
pioneered by Becke;48 these methods are intrinsi-
cally linear scaling also, and are relatively standard
today.

Work is also underway to further extend the
linear scaling capabilities of Q-Chem. Because, as
mentioned above, there are only a linear number of
numerically significant density matrix elements for
sufficiently large molecules, it is possible to solve for
them in linear scaling time, given the Fock matrix.
This is in contrast to the cubic scaling diagonaliza-
tion effort that conventional SCF requires. However,
the molecule size necessary to see a crossover be-
tween cubic scaling with a small coefficient, and
linear scaling with a large coefficient turns out to be
quite large in practice. There is also much potential
for improved methods for analytical frequency cal-
culations, because the advantage of solving for the
localized disturbance in the density matrix (instead
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of a full matrix) due to each atomic displacement
grows faster. New methods that solve directly for
the change in the density matrix for each geomet-
ric displacement49 are being incorporated into Q-
Chem.

Wave Function-Based Treatments of
Electron Correlation

While density functional methods yield a de-
scription of electronic structure that accounts for
electron correlation subject only to the limitations
of present-day functionals (which for example omit
dispersion interactions), DFT cannot be systemat-
ically improved if the results are deficient. Wave
function-based approaches for describing electron
correlation50 offer this main advantage. There are
four broad classes of models for describing elec-
tron correlation that are supported within Q-Chem.
The first three directly approximate the full time-
independent Schrödinger equation. In order of in-
creasing accuracy, and also increasing cost, they are:
(a) perturbative treatment of pair correlations be-
tween electrons, capable of recovering typically 80%
or so of the correlation energy in stable molecules.
(b) Self-consistent treatment of pair correlations be-
tween electrons, capable of recovering on the order
of 95% or so of the correlation energy. (c) Nonit-
erative corrections for higher than double substi-
tutions, which can typically account for more than
99% of the correlation energy. They are the basis of
many modern methods that are capable of yielding
chemical accuracy for ground state reaction ener-
gies, as exemplified by the G251 and G3 methods.52

These methods are discussed in the following three
subsections.

There is a fourth class of methods supported in
Q-Chem, which have a different objective. This is to
obtain a balanced description of electron correlation
in highly correlated systems, such as biradicals, or
along bond-breaking coordinates, and is discussed
in the fourth part of this section.

MP2 AND LOCAL MP2 METHODS

The second-order Møller–Plesset theory (MP2)53

is the simplest useful wave function-based electron
correlation method. Revived in the mid-1970s, it
remains highly popular today, because it offers sys-
tematic improvement in optimized geometries and
other molecular properties relative to the Hartree–
Fock (HF) theory.54 Indeed, in a recent comparative
study of small closed shell molecules,55 MP2 outper-
formed much more expensive singles and doubles

coupled-cluster theory for such properties! Relative
to state-of-the-art Kohn–Sham density functional
theory (DFT) methods,29 which are the most eco-
nomical methods to account for electron correlation
effects, MP2 has the advantage of properly incorpo-
rating long-range dispersion forces. The principal
weaknesses of MP2 theory are for open shell sys-
tems, and other cases where the HF determinant is
a poor starting point.

Q-Chem contains an efficient conventional semi-
direct method to evaluate the MP2 energy and
gradient.56 These methods require OVN memory
(O, V, N are the numbers of occupied, virtual, and
total orbitals, respectively), and disk space, which
is bounded from above by OVN2/2. The latter can
be reduced to IVN2/2 by treating the occupied or-
bitals in batches of size I, and reevaluating the
two-electron integrals O/I times. This approach is
tractable on modern workstations for energy and
gradient calculations of at least 500 basis functions
or so, or molecules of between 15 and 30 first row
atoms, depending on the basis set size. The compu-
tational cost increases between the third and fifth
power of the size of the molecule, depending on
which part of the calculation is time dominant.

To permit MP2 energy calculations on larger sys-
tems, Q-Chem contains newly developed local cor-
relation methods.57, 58 These methods involve phys-
ically motivated truncations of the full MP2 energy
expression that substantially reduce the cost of very
large MP2 calculations and also reduce the rate of
increase of the calculations with molecular size. The
answers are also slightly different, as these meth-
ods define their own theoretical model chemistries
that deviate slightly from conventional MP2 the-
ory. Below we summarize the physical content of
these models, and their computational costs, and
give some general guidelines to their accuracy.

MP2 theory includes the energy contributions
from pair correlations between electrons, in the
form of double substitutions of occupied orbitals
by empty (virtual) orbitals. We describe the double
substitutions in terms of a basis of nonorthogo-
nal localized atom-centered functions to permit the
development of local models. The smallest atom-
centered set of functions that can span the occupied
space is a minimal basis set on each atom, for which
we use either polarized atomic orbitals (see earlier),
or, by default, extracted polarized atomic orbitals
(EPAOs),59 projected into the occupied space. Note
that the EPAOs do not alter the usual SCF energy,
while as discussed above the PAOs do. The virtual
space is spanned by the full set of atomic orbitals,
projected into the virtual space. In terms of these
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FIGURE 1. Full (untruncated) MP2 allows for double
substitutions connecting up to four atoms together,
because in terms of atom-centered functions, occupied
orbitals on two given atoms will generally be promoted
to virtual orbitals on two different atoms. Hence, the
number of double substitutions rises with the fourth
power of molecular size. Q-Chem’s local MP2 methods
restrict the double substitutions based on spatial
proximity. In the triatomics in molecules (TRIM) model,
one occupied to virtual substitution is required to be on a
single atom, while the other can be nonlocal. Thus, the
number of substitutions retained grows with the third
power of molecular size. The diatomics in molecules
(DIM) truncation requires both orbital substitutions to be
restricted to a given atom, so that the number of retained
double substitutions grows with the second power of
molecular size.

atom-centered functions, a double substitution will
generally couple together four different atoms, as
shown in Figure 1.

The two local models arise by making atomic
truncations of the full set of double substitutions as
described below, and as shown in Figure 1. Note
that by the nature of an atomic truncation, these
local models yield smooth, globally defined po-
tential energy surfaces. (1) Triatomics in molecules
(TRIM): The gentlest atomic truncation is to force
one substitution to be restricted to a single atom,
while no restriction is placed on the other. This
means that only one electron can be transferred
with a double substitution. The number of ampli-
tudes is reduced to cubic, as only three separate
atoms can be coupled by TRIM double substitu-
tion. The TRIM models recovers around 99.7% of the
MP2 correlation energy for covalent bonding.58 The
performace for relative energies is very robust, as
shown in ref. 58 for the challenging case of torsional
barriers in conjugated molecules. (2) Diatomics-in-
molecules (DIM): a stronger truncation is to force
each substitution to be restricted to a single atom, so
that only pairs of atoms are coupled by the double

substitution. The long-range dispersion is still cor-
rectly recovered, but nonlocal charge transfer is no
longer allowed. We find that typically 95% of the
correlation energy associated with covalent bond-
ing is recovered, but the performance for hydrogen
bonding is much poorer.

Finally, for comparison, TRIM comfortably ex-
ceeds the accuracy of the widely used Pulay–
Saebo60 local MP2 method (roughly 98–99% correla-
tion energy recovery), while DIM is below it. Note,
however, that the Pulay–Saebo method as conven-
tionally defined does not yield strictly continuous
potential energy surfaces.

The computational advantage associated with
the local MP2 methods varies, depending upon the
size of molecule and the basis set. As a very rough
general estimate, TRIM-MP2 calculations are feasi-
ble on molecule sizes about twice as large as those
for which conventional MP2 calculations are feasi-
ble on a given computer, and this is their primary
advantage. Q-Chem’s implementation is well suited
for large basis set calculations, because the memory
requirement for the integral transformation does not
exceed OON, and is thresholded so that it asymptot-
ically grows linearly with molecule size. Additional
memory of approximately 32N2 is required to com-
plete the local MP2 energy evaluation. The disk
space requirement is only about 8OVN, but is not
thresholded. DIM-MP2 calculations are faster than
TRIM-MP2, and do not require disk storage, but
have similar memory requirements.

COUPLED-CLUSTER SINGLES AND
DOUBLES METHODS

The standard approach for treating pair corre-
lations self-consistently are coupled-cluster meth-
ods where the cluster operator contains all single
and double substitutions,61 abbreviated as CCSD.
Quadratic configuration interaction with singles
and doubles (QCISD)62 is a widely used alternative,
which is probably best viewed as an approxima-
tion to CCSD. These methods yield results that are
only slightly superior to MP2 for structures and fre-
quencies of stable closed-shell molecules. However,
they are far superior for reactive species, such as
transition structures and radicals, for which the per-
formance of MP2 is quite erratic. Q-Chem supports
energy evaluation for both CCSD and QCISD. In ad-
dition, the MP3 and MP4 energies are also available.

There is an alternative to CCSD and QCISD avail-
able in Q-Chem that has some additional advan-
tages. This is the optimized orbital CCSD method
(OO-CCD), which we normally refer to as sim-
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ply optimized doubles (OD).63 In the OD method,
there are no single substitutions in the cluster op-
erator. Instead, the orbitals that define the mean
field reference are optimized to minimize the total
energy (defined in the usual nonvariational clus-
ter fashion). This can be viewed as an alternative
definition of approximate Brueckner orbitals. The
OD method has the advantage of formal simplic-
ity (orbital variations and single substitutions are
redundant variables). In cases where Hartree–Fock
theory performs poorly (e.g., artifactual symme-
try breaking), it is also practically advantageous to
use the OD method, where the HF orbitals are not
required, rather than CCSD or QCISD. Q-Chem sup-
ports both energies and analytical gradients using
the OD method. The computational cost for the OD
energy is roughly twice that of the CCSD or QCISD
method, but the total cost of energy plus gradient is
similar.

The implementation of the QCISD, CCSD, and
OD methods in Q-Chem requires substantial disk
space, which grows as the number of atomic orbitals
to the fourth power. The computational effort in-
creases with the sixth power of molecule size, or
the fourth power of basis set size, for fixed mole-
cule size. These are the conventional scalings as-
sociated with these methods, and result from the
use of delocalized occupied and virtual orbitals. In
other words, the local methods described for MP2
theory in the previous section have not yet been
implemented for these higher correlation methods.
Finally, we note that the internal details of our im-
plementation make our code readily extensible to
new correlated techniques relative to traditional de-
signs. The code is fully object oriented, and the
top-level calls closely resemble spin-orbital algebra.

NONITERATIVE CORRECTIONS DUE TO HIGHER
CORRELATION EFFECTS

To approach chemical accuracy in reaction ener-
gies and related properties, it is necessary to account
for electron correlation effects that involve three
electrons simultaneously, as represented by triple
substitutions relative to the mean field single de-
terminant reference, which arise in MP4. The best
standart methods for including triple substitutions
are the CCSD(T)64 and QCISD(T) methods.62 The
accuracy of these methods is well documented for
many cases,65 and, in general, is a very significant
improvement relative to the starting point (either
CCSD or QCISD). The cost of these corrections
scales with the seventh power of molecule size (or
the fourth power of the number of basis functions

for fixed molecule size), although no additional
disk resourses are required relative to the starting
coupled cluster calculation. Q-Chem supports the
evaluation of CCSD(T) and QCISD(T) energies, as
well as the corresponding OD(T) correction to the
optimized doubles method discussed in the previ-
ous subsection. As discussed in the next section, a
local triples method is also being developed.

While the (T) corrections have been extraordi-
narily successful, there is nonetheless still room
for improvement. They contain judiciously chosen
terms from fourth- and fifth-order Møller–Plesset
perturbation theory, as well as higher order terms
that result from the fact that the converged clus-
ter amplitudes are employed to evaluate the fourth-
and fifth-order terms. The correction, therefore, de-
pends upon the bare reference orbitals and orbital
energies, and in this way its effectiveness still de-
pends on the quality of the reference determinant.
Because we are correcting a coupled cluster solution
rather that a single determinant, this is an aspect of
the (T) corrections that can be improved.

Such an improvement has recently been re-
ported,66 and Q-Chem contains this new method.
The new correction is a true second-order correction
to a coupled cluster starting point, and is, therefore,
denoted as (2). It is available for the three clus-
ter methods discussed above, as OD(2), CCSD(2),
and QCISD(2) energies.66, 67 The basis of the (2)
method is to partition not the regular Hamiltonian
into perturbed and unperturbed parts, but rather to
partition a similarity-transformed Hamiltonian, de-
fined as ˆ̄H = e−T̂ĤeT̂. In the truncated space (call
it the p-space) within which the cluster problem is
solved (e.g., singles and doubles for CCSD), the cou-

pled cluster wavefunction is a true eigenvalue of ˆ̄H.
Therefore, we take the zero-order Hamiltonian, ˆ̄H(0),
to be the full ˆ̄H in the p-space, while in the space
of excluded substitutions (the q-space) we take only

the one-body part of ˆ̄H (which can be made diag-
onal). The fluctuation potential describing electron

correlations in the q-space is ˆ̄H− ˆ̄H(0), and the (2) cor-
rection then follows from second-order perturbation
theory.

The new partitioning of terms between the per-
turbed and unperturbed Hamiltonians inherent in
the (2) correction leads to a correction that shows
both similarities and differences relative to the ex-
isting (T) corrections. There are two types of higher
correlations that enter at second order: not only
triple substitutions, but also quadruple substitu-
tions. The quadruples are treated with a factoriza-
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FIGURE 2. Comparison of calculated potential curves
for breaking the F2 bond using restricted (spin-pure
orbitals) using the optimized orbital coupled cluster
doubles (OD) method, and two noniterative corrections
for higher than double substitutions. The basis set is the
cc-pVDZ basis. OD itself is qualitatively correct, but
makes the well depth far too deep because it cannot
recover a uniform fraction of the correlation energy as
the bond is stretched. The first noniterative correction is
the standard triples correction, (T), which exhibits an
unphysical hump, and clearly is diverging as the bond
length is stretched. Second is the new (2) correction,
which corrects the well depth, and is stable even as the
bonding and antibonding σ orbitals approach
degeneracy.

tion ansatz, that is exact in fifth-order Møller–Plesset
theory,68 to reduce their computational cost from N9

to N6. For large basis sets this can still be larger
than the cost of the triples terms, which scale as the
seventh power of molecule size, with a factor twice
as large as the usual (T) corrections. These correc-
tions are feasible for molecules containing between
4 and 10 first-row atoms, depending on computer
resources, and the size of the basis set chosen. There
is early evidence that the (2) corrections are su-
perior to the (T) corrections for highly correlated
systems.66 This shows up in improved potential
curves, particularly at long range, as illustrated in
Figure 2, and may also extend to improved energetic
and structural properties at equilibrium in problem-
atical cases. It will be some time before sufficient
testing on the new (2) corrections has been done to
permit a general assessment of the performance of
these methods, but they are clearly very promising.

LOCAL TRIPLE EXCITATION METHODS

Work is underway to incorporate local correla-
tion methods for triple substitutions,69, 70 for closed-
shell molecules only. Triple substitutions are es-
sential for predicting chemical reaction energies

to 1 kcal/mol or better, and are employed in the
widely used G2 and G3 thermochemical meth-
ods, where the rate-determining step is usually
the triples contribution to the fourth-order Møller–
Plesset energy: MP4(T). The cost of methods includ-
ing triple substitutions, such as the widely used
MP4(T) and CCSD(T) methods, scales as the sev-
enth power of molecule size, and this limits their
application to roughly 10 first row atoms. The lo-
cal triples algorithm reduces the cost from seventh
order to fifth order, and thereby enables calcula-
tions on molecules two to three times larger than
previously feasible. It crosses over with the conven-
tional triples algorithm around 25 occupied orbitals,
or roughly 150 basis functions. The local algorithm
requires all the doubles amplitudes to be stored on
disk, and also requires disk storage for a cubic num-
ber of local integrals. A relatively small (quadratic)
amount of memory is required.

The basis of the local triples method is a gen-
eralization of the TRIM method discussed above
for MP2 theory. Three electrons are simultaneously
promoted in a triple substitution, and in the local
model, two of those promotions are restricted to a
single atom, while the third is permitted to be nonlo-
cal. This reduces the number of triple substitutions
from rising with the sixth power of molecule size
to rising with the fourth power. Benchmark thermo-
chemical calculations on 105 molecules in the G2/97
database52 indicate that local truncation recovers at
least 95% of the untruncated triples energy. The lo-
cal error introduced into the G3 binding energies is
typically 0.1–0.2 kcal/mol, with a maximum error of
0.26 kcal/mol. This error is small enough for most
applications. If higher accuracy is required, the er-
ror can be reduced by employing a less severe local
truncation.

VALENCE ACTIVE SPACE METHODS

Electron correlation effects can be qualitatively
divided into two classes. The first class is static
or nondynamical correlation: long wavelength low-
energy correlations associated with other electron
configurations that are nearly as low in energy as
the lowest energy configuration. These correlation
effects are important for problems such as bond
breaking, and are the hardest to describe because
by definition the single configuration Hartree–Fock
description is not a good starting point. The second
class is dynamical correlation: short wavelength
high-energy correlations associated with atomic-
like effects. Dynamical correlation is essential for
quantitative accuracy.
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In the methods discussed in the previous several
subsections, the objective was to approximate the
total correlation energy. However, in some cases, it
is useful to instead directly model the nondynam-
ical and dynamical correlation energies separately.
The reasons for this are pragmatic: with approxi-
mate methods, such a separation can give a bet-
ter balanced treatment of electron correlation along
bond-breaking coordinates, or reaction coordinates
that involve biradicaloid intermediates. The nondy-
namical correlation energy is conveniently defined
as the solution of the Schrödinger equation within
a small basis set composed of valence bonding,
antibonding, and lone-pair orbitals: the so-called
full valence active space. Solved exactly, this is the
so-called full valence complete active space SCF
(CASSCF),71 or equivalently, the fully optimized re-
action space (FORS) method.72

Full-valence CASSCF and FORS involve compu-
tational complexity, which increases exponentially
with the number of atoms, and is thus unfeasi-
ble beyond systems of only a few atoms, unless
the active space is further restricted on a case-by-
case basis. Q-Chem includes an economical method
that directly approximates these theories using a
truncated coupled cluster doubles wave function
with optimized orbitals.73 This represents a gen-
eralization of the optimized doubles method (OD)
discussed above such that double excitations are
only permitted within the valence active space, and
the orbitals describing this active space are simulta-
neously optimized. This method may be fully spec-
ified as valence optimized orbital coupled cluster
doubles (VOO-CCD), or, more concisely as valence
optimized doubles (VOD). VOD calculations have
computational complexity that scales similarly to
OD, although with a smaller prefactor, and with far
lower disk storage requirements. It is thus an eco-
nomical and size-consistent approximation to full
valence CASSCF, which can be applied to medium-
sized organic molecules with a full valence active
space.

The performance of VOD for bond-breaking
processes may be briefly summarized as follows.73

For processes that are essentially single bond break-
ing in nature, VOD appears to give essentially quan-
titative accuracy in comparison with full valence
CASSCF. Caution is required in the description of
multiple bond breaking, because if restricted or-
bitals are enforced at long bond lengths, VOD can
exhibit nonvariational collapse to energies well be-
low the true values (like any conventional coupled
cluster method). For a discussion of these limita-
tions, see refs. 50 and 74, and we note that efforts are

currently under way to develop modified coupled
cluster methods that perform more satisfactorily for
multiple bond breaking.74, 75 Both energies and ana-
lytical gradients are available for VOD in Q-Chem.
We note that convergence of VOD calculations is
generally poorer than that of OD calculations, be-
cause of the difficulty of optimizing the active space
orbitals.

VOD energies can be perturbatively corrected
for dynamical correlation effects by an appropriate
generalization of the OD(2) model discussed in the
previous section. Q-Chem contains an implemen-
tation of the corresponding VOD(2) method,76 for
energies only. VOD(2) includes the dynamical corre-
lation effects associated with the single and double
substitutions omitted in VOD, as well as a subset of
triple and quadruple substitutions. The latter allow
a consistent treatment of correlation effects from all
determinants in the VOD reference, as is required
when the HF determinant is a poor starting point.
Use of the VOD(2) correction yields relative ener-
gies that are greatly improved relative to VOD.76 In
summary, VOD(2) is a true second-order perturba-
tion correction to the VOD reference for dynamical
correlation, analogous to the manner in which MP2
is a second-order correction to the Hartree–Fock ref-
erence for all correlation effects. However, it is of
much higher quality than MP2 because the pertur-
bation is much smaller, because VOD includes the
leading nondynamical correlations.

Excited State Methods

The development of effective approaches to mod-
eling electronic excited states has historically lagged
behind advances in treating the ground state. In
part, this is because of the much greater diversity
in the character of the wave functions for excited
states, making it more difficult to develop broadly
applicable methods without molecule-specific or
even state-specific specification in the form of the
wave function. Broadly speaking, Q-Chem con-
tains methods that are capable of giving qualitative
agreement, and in many cases quantitative agree-
ment with experiment for lower optically allowed
states. The situation is less satisfactory for states that
involve bi-electronic excitations, although even here
reasonable results can sometimes be obtained. The
discussion of specific methods below is divided into
two sections. The first part describes excited state
versions of single configuration treatments of the
ground state via Hartree–Fock theory, and in partic-
ular, Kohn–Sham density functional theory, which
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are applicable to quite large molecules. The second
part discusses more accurate, and also more ex-
pensive excited state methods based upon coupled
cluster theory, which are only feasible for smaller
molecules.

EXCITED STATE METHODS BEGINNING FROM
SELF-CONSISTENT FIELD GROUND STATES

Here we consider the ground state to be given
as a single determinant: either the Hartree–Fock de-
terminant for wave function-based methods, or the
Kohn–Sham determinant, which parameterizes the
ground-state electron density in the density func-
tional theory (DFT). The single determinant is op-
timized by minimizing the total energy, which is
equivalent via the Brillouin theorem to obtaining a
set of occupied orbitals whose matrix elements with
all single substitutions are zero. Therefore, single
substitutions are Hamiltonian noninteracting with
the ground state, and form a natural basis for de-
scribing excited states at a level of theory roughly
similar to the ground state.

Beginning from the Hartree–Fock theory, this
leads to excited states that are a mixture of all
such single substitutions (the CIS method).77 Q-
Chem contains efficient direct implementations of
CIS not only for closed- and open-shell energies,
but also for analytical first and second derivatives.78

For closed-shell molecules, CIS yields qualitatively
correct descriptions of one-electron excited states,
although due to neglect of electron correlation, the
excitation energies cannot generally be expected to
be reliable to within more than roughly 2 eV. Op-
timized geometries and vibrational frequencies are
of reasonably good quality,79 roughly similar to HF
theory for ground states. Conventional CIS is quali-
tatively unsatisfactory for radicals, but the extended
CIS (XCIS) method is available for doublet and
quartet excitation energies,80 and with comparable
performance to CIS for closed-shell molecules. To
correct CIS excitation energies for the leading ef-
fects of electron correlation, Q-Chem also includes a
perturbative doubles correction CIS(D).81 CIS(D) is
roughly an excited state analog of MP2 theory, and
typically reduces errors in CIS excitation energies
by a factor of two or more, while the computational
cost per state is roughly similar to an MP2 calcula-
tion.

Excited states may be obtained from density
functional theory by time-dependent density func-
tional theory,82, 83 which calculates poles in the re-
sponse of the ground-state density to a time-varying
applied electric field. These poles are Bohr frequen-

cies or excitation energies, and are available in Q-
Chem,84 together with the CIS-like Tamm–Dancoff
approximation.85 TDDFT is becoming very popular
as a method for studying excited states because the
computational cost is roughly similar to the simple
CIS method (scaling as roughly the square of mole-
cular size), but a description of differential electron
correlation effects is implicit in the method. The ex-
citation energies for low-lying valence excited states
of molecules (below the ionization threshold) are of-
ten remarkably improved relative to CIS, with an
accuracy of roughly 0.3 eV being observed with ei-
ther gradient corrected or local density functionals.

However, standard density functionals do not
yield a potential with the correct long-range
Coulomb tail (due to the so-called self-interaction
problem), and therefore, excited states that sam-
ple this tail (e.g., diffuse Rydberg states, and
some charge transfer excited states) are not given
accurately.86, 87 Hence it is advisable to only employ
TDDFT for low-lying valence excited states that are
below the first ionization potential of the molecule.
This makes radical cations a particularly favorable
choice of system, as exploited in ref. 88. TDDFT
for low-lying valence excited states of radicals is in
general a remarkable improvement relative to CIS,
including some states, that, when treated by wave
function-based methods can involve a significant
fraction of double excitation character.84

EXCITED STATE METHODS BASED ON
COUPLED-CLUSTER GROUND STATES

It is possible to obtain a description of elec-
tronic excited states at a level of theory similar to
that associated with the coupled-cluster theory for
the ground state, by applying either the linear re-
sponse theory89 for equations of motion methods.90

A number of groups have demonstrated that excita-
tion energies based on a coupled-cluster singles and
doubles ground state are generally very accurate
for states that are primarily single electron promo-
tions. The errors observed in calculated excitation
energies to such states is approximately 0.3 eV, in-
cluding both valence and Rydberg excited states.
This, of course, assumes that a basis set large and
flexible enough to describe valence and Rydberg
states is employed. The accuracy of the excited state
coupled-cluster methods is much lower for excited
states that involve a substantial component of dou-
ble excitation character, where errors may be 1 eV or
even more. Such errors arise because the description
of electron correlation is better in the ground state
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than for an excited state with substantial double ex-
citation character.

Q-Chem includes coupled-cluster methods for
excited states based on the optimized orbital
coupled-cluster doubles (OD) method, described
earlier. OD excitation energies are essentially iden-
tical in numerical performance to CCSD excited
states, as has been recently demonstrated.91 This
method, while far more computationally expensive
than TDDFT, is nevertheless useful as a proven high
accuracy method for the study of excited states of
small molecules. Also, when studying a series of re-
lated molecules it can be very useful to compare the
performance of TDDFT and coupled-cluster theory
for at least a small example to understand its per-
formance. Along similar lines, the CIS(D) method
described earlier as an economical correlation en-
ergy correction to CIS excitation energies is, in fact,
an approximation to coupled-cluster excitation en-
ergies. It is useful to assess the performance of
CIS(D) for a class of problems by benchmarking
against the full coupled-cluster treatment. Finally,
Q-Chem also includes excited states by the equation
of motion version of the valence optimized doubles
(VOD) method (see above), whose validity and use
is fully discussed in ref. 91.

Wave Function Analysis

Wave functions are not easy to interpret, and this
has continued to fuel an interest in the extraction
of simpler quantities from them. The most basic
tools that have been developed are the familiar Mul-
liken and Lowdin population analyses,26 but these
attempt to reduce electronic structure to a set of
numbers, and this is often not entirely satisfactory.
A more sophisticated approach to population analy-
sis the widely used Natural Bond Order (NBO) ap-
proach, developed by Weinhold and coworkers.92, 93

Q-Chem contains a basic interface to this package,94

although not all of its functionality is currently sup-
ported. Alternatively, instead of numbers, one may
seek simple functions that capture the key proper-
ties of the wave function. Accordingly, it has now
become commonplace for researchers to study sys-
tems of interest by plotting the electron density,
key molecular orbitals, electrostatic potential, elec-
tric field, or other such functions. Q-Chem is well
equipped for such calculations.

Q-Chem can also compute a number of less famil-
iar functions and four classes of these are described
in the following paragraphs:

STEWART ATOMS

Stewart atoms are the unique nuclear-centered
spherical functions whose sum best fits a molecular
density in a least-squares sense.95 Their usefulness
lies in the fact that they recover atomic identity
from a molecular density, and yield a much sim-
plified (although approximate) description of the
electronic density. This second fact has ramifica-
tions for the rapid calculation of Coulomb energies,
and for the evaluation of integrals arising in DFT
without recourse to numerical quadrature grids. Al-
though several methods have been developed for
calculating Stewart atoms,96 the most conceptually
straightforward approach is based on resolution of
the identity (RI), which expands the Stewart atoms
in a radial basis located on each center.97 The expan-
sion coefficients are determined via a least-squares
fitting procedure, and this has been fully imple-
mented within the Q-Chem package. Work is also
being carried out on an integral equation formu-
lation of the Stewart theory in which the Stewart
atoms are obtained by convolving the molecular
density with solution kernels.98 This method avoids
the need for an auxiliary expansion basis, and thus
circumvents the basis set convergence problems that
affect the RI expansion.

MOMENTUM DENSITIES

The electron density of a molecule is a familiar
quantity, and plots of such densities adorn many
modern chemistry textbooks. It is useful because it
reveals the positions at which an electron is most
likely to be found. Furthermore, because it can
be measured by X-ray crystallography, the electron
density provides an important bridge between the-
ory and experiment. The less familiar momentum
density is also illuminating, because it reveals the
momenta that an electron is most likely to possess.
Momentum densities also offer a bridge to exper-
iment through Compton scattering measurements.
Electron densities and momentum densities thus
provide complementary information about a chem-
ical system and, taken together, provide a more
detailed picture of electronic structure than emerges
from either separately.

INTRACULES

Electron and momentum densities are one-
electron functions, which means that they provide
information about the probability that one electron
will be found in a certain position or with a cer-
tain momentum. However, because the interactions
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between pairs of electrons are so important in chem-
istry, it is also beneficial to generate and study the
analogous two-electron functions. The position in-
tracule, P(u), and momentum intracule, P̂(v), are the
probability distributions of the relative position u =
|r1−r2| and relative momentum v = |p1 − p2| of two
electrons. An intracule derived from a Hartree–Fock
wave function can be separated into its Coulomb
and exchange components, and these sometimes
yield more information than their sum. Q-Chem
can separately calculate the J(u), K(u), Ĵ(v), and K̂(v)
intracules.99 – 101

ATTACHMENT AND DETACHMENT DENSITIES

While an electronic transition is a collective re-
arrangement of all electrons in a molecule it is
very desirable to have a one-electron picture of
the main changes in charge density. In attachment–
detachment density analysis,102 the difference den-
sity matrix between the ground state and the excited
state of interest is decomposed into a detachment
density that is rearranged upon excitation into an
attachment density. The remaining electron den-
sity is unaffected. This procedure is often helpful
for visualizing electronic transitions and classifying
them as valence, or Rydberg, or mixed, and exam-
ining whether or not there is charge-transfer char-
acter. Attachment–detachment analysis has been
successfully employed in a number of chemical
applications.103

Additional Capabilities

USER INTERFACE

Like traditional electronic structure programs, Q-
Chem is fundamentally a backend compute engine.
It contains a simple text-based input mechanism, in-
cluding scripts that permit emulation of common
Gaussian-style keywords. On some platforms this
release of Q-Chem is bundled as a back end with
the Spartan user interface from Wavefunction, Inc.,
which provides a versatile and sophisticated plat-
form for building molecules, and visualizing the
results of the calculations.

SOLVATION MODELING

Q-Chem contains two solvation models.104 First,
the simple spherical Onsager reaction field model,
and second, the considerably more sophisticated
Langevin dipoles model developed by Warshel and
Florian.105 The Langevin dipoles approach is also

a continuum solvation model, but it more realisti-
cally treats effects such as dielectric saturation, and
local solvation, by incorporating a layer of dipoles
around the Van der Waals surface of the solute,
and this dipole layer is, in turn, surrounded by
continuum solvent. The individual dipoles orient
themselves self-consistently with the solute charge
distribution (while having constant magnitude) to
determine the short-range part of the reaction field.
This approach has been successfully applied in a
number of chemical applications.106

WALKING ON POTENTIAL ENERGY SURFACES

Q-Chem’s optimization capabilities were devel-
oped by Dr. Jon Baker, and are based on the
eigenvector following method.107 This is capable of
searching for both minima and transition structures,
using either gradients, or gradients and hessians as
input. It employs redundant internal coordinates108

to ensure good convergence even when an initial
estimate of the force constant matrix is not avail-
able. Additionally, a sophisticated treatment of op-
timization with constraints109 is available, in which
constraints can be specified either as frozen internal
coordinates (bond lengths, angles, etc.), or frozen
Cartesian coordinates.

RELATIVISTIC ENERGY CORRECTION

A relativistic energy of the order 1/c2, where
c is the speed of light, is calculated automatically
each time a Hartree–Fock frequency calculation is
requested. This is an additive correction to the
Hartree–Fock energy that approximately accounts
for the increase of the electron mass as the elec-
tron velocity approaches the speed of light, which
occurs near an atomic nucleus. It is the first-order
contribution of the stationary direct perturbation
theory expansion110 of the Dirac–Fock energy. The
Dirac–Fock method is a many-electron generaliza-
tion of the Dirac equation,111 and includes four
components for each molecular orbital. Dirac–Fock
is accurate for heavy-atom-containing molecules,
but it is too costly, and there are numerical prob-
lems with convergence. See ref. 112 for a review
of relativistic methods including Dirac–Fock. The
stationary direct perturbation expansion in powers
of 1/c2 gives an order-by-order approximation to
the Dirac–Fock energy, where the zero-order energy
is the nonrelativistic Hartree–Fock energy, and the
infinite order energy is the Dirac–Fock energy. In
Q-Chem, real UHF orbitals are used as the zero-
order orbitals in conjunction with the first-order
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energy formula.113, 114 This results in a scalar rela-
tivistic correction (that does not include spin-orbit
effects) which is a good approximation to the Dirac–
Fock energy minus the spin-orbit contribution for
molecules containing the atoms hydrogen through
krypton and perhaps heavier atoms.

DIAGONAL ADIABATIC CORRECTION

The commonly used Born–Oppenheimer approx-
imation separates the motion of electrons from that
of nuclei. For a total molecular energy, this approxi-
mation is correct up to the order of O(m/M), where
m/M is the ratio of the electronic to the nuclear
masses. The leading contribution to this molecular
energy beyond the Born–Oppenheimer approxima-
tion is described by the so-called diagonal Born–
Oppenheimer correction (DBOC),115 which has been
proven to be rigorous even for the molecules with
separated center-of-mass motion.116 Q-Chem is ca-
pable of calculating the DBOC for self-consistent
field wave functions. Additionally, Q-Chem can
evaluate the leading correlation correction to the
DBOC, based on the Møller–Plesset perturbation ex-
pansion of the correlated wave function.117

PARALLEL COMPUTING

One way to extend the applicability of quan-
tum chemistry methods to larger molecules is to
take advantage of the growing power and avail-
ability of parallel computers. Q-Chem recognizes
this need, and has been making systematic effort
to parallelize the most computationally demanding
steps in the code. Parallelized features in the current
version of Q-Chem includes HF and DFT models
for single-point and gradient calculations.118 A dy-
namic load-balancing scheme is used to achieve
optimal parallel efficiency and the Message-Passing
Interface (MPI) is used for portability. The speedups
obtained in benchmark calculations are 12–14 on 16
nodes for single-point and 40–50 on 64 nodes for en-
ergy gradient evaluation (SGI Origin 2000 and Cray
T3E timings). An IBM SP2 version is now being
completed, and efforts are being made in develop-
ment of parallel linear-scaling methods.

Conclusions

The new release of the Q-Chem program de-
scribed in this article represents the second genera-
tion of this package. This article has described the
key features contained in the program with par-
ticular emphasis on theories and algorithms that

are new and not available elsewhere. As the re-
sult of collaboration between a software company
and several academic research groups, such features
represent one of the strongest aspects of Q-Chem.
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