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We present a simple algorithm, which we call the maximum overlap method (MOM), for finding excited-
state solutions to self-consistent field (SCF) equations. Instead of using the aufbau principle, the algorithm
maximizes the overlap between the occupied orbitals on successive SCF iterations. This prevents variational
collapse to the ground state and guides the SCF process toward the nearest, rather than the lowest energy,
solution. The resulting excited-state solutions can be treated in the same way as the ground-state solution
and, in particular, derivatives of excited-state energies can be computed using ground-state code. We assess
the performance of our method by applying it to a variety of excited-state problems including the calculation
of excitation energies, charge-transfer states, and excited-state properties.

1. Introduction

The time-independent Schrödinger wave equation for an
n-electron system

ĤΨk )EkΨk (1.1)

is the foundation of quantum chemistry. The Ψk are wave
functions of the stationary states of the system, and the Ek are
their energies. The Hamiltonian operator Ĥ is Hermitian and
its eigenfunctions Ψk form a complete, orthogonal basis for
n-particle space.

Obtaining accurate solutions of (1.1) is onerous, and this
difficulty has spawned a wide variety of methods for obtaining
approximate solutions. One of the most successful strategies is
to approximate Ĥ by a sum of one-electron operators

ĤSCF )∑
i)1

n

f̂ (ri) (1.2)

because the eigenfunctions of the resulting simplified Schröd-
inger equation

ĤSCFΨk
SCF )Ek

SCFΨk
SCF (1.3)

are just single determinants

Ψk
SCF ) det[!i(rj, sj)] (1.4)

where the !i(r,s) ) ψi(r)σ(s) are spin-orbitals and each
molecular orbital (MO)

ψi(r))∑
µ

N

Cµiφµ(r) (1.5)

is expanded in a finite basis {φµ}.
In the most accurate schemes,1-4 ĤSCF depends on its

eigenfunction Ψi
SCF and (1.3) is therefore nonlinear and requires

iterative solution.5 The MO coefficients Cµi are usually deter-

mined by minimizing the energy using one of several
procedures6-11 and this process is continued until ĤSCF and Ψi

SCF

converge, at which point a self-consistent field (SCF) has been
achieved. This usually yields the lowest-energy single deter-
minant within the basis.

The conceptual and computational simplicity of the one-
electron model (1.2), together with its surprisingly high ac-
curacy, has led to its widespread adoption for the treatment of
ground states. In particular, Kohn-Sham density functional
theory (DFT)3,4 has become an extremely popular tool in
quantum chemistry.

Long after HF and DFT were established for ground states,
CIS (single-excitation configuration interaction12,13) and TD-
DFT (time-dependent density functional theory14,15) were de-
veloped to provide broadly analogous treatments for excited
states. Both extensions give qualitative and sometimes quantita-
tive accuracy for low-lying valence excitation energies. How-
ever, CIS and TD-DFT do not allow relaxation of the orbitals
in the excited state and they therefore fail where this relaxation
is important. TD-DFT also inherits the deficiencies of the
approximate functional used to compute the exchange-correla-
tion component of the energy. TD-DFT performs particularly
poorly for Rydberg states unless the exchange-correlation
potential is patched,16-18 and it fails to capture the correct
behavior of charge-transfer excitations.19,20 For such cases, more
accurate (but significantly more expensive) approaches such as
the complete active space self-consistent field (CASSCF),21,22

the equation-of-motion coupled-cluster (EOM-CC),23 and the
spin-flip coupled-cluster (SF-CC)24 methods can be used to
obtain greater accuracy.

One may reasonably ask, however, whether it is either
necessary or desirable to treat ground and excited states as if
they were fundamentally different. Such a methodological
discontinuity is difficult to justify on either physical or
mathematical grounds and, indeed, by singling out the ground
state for special treatment, we introduce a bias that can be hard
to remove later. Is it not more natural, one may wonder, to obtain
excited states by an SCF procedure?

After a ground-state SCF has converged, crude approxima-
tions to excited states can be obtained by promoting electrons
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from occupied to virtual orbitals to yield singly- or multiply-
excited states. This approach has well-known deficiencies, the
most obvious of which is that the orbitals are optimal only for
the ground state and are not able to relax after the electronic
excitation. Indeed, the virtual orbitals feel the interaction of all
n electrons in the system and are therefore more appropriate
for excited states of the (n + 1)-electron system. In separate
studies, Hunt and Goddard25 and Huzinaga and Arnau26,27

suggested methods for optimizing these virtual orbitals for
excited states of the original n-electron system. They allow
rotations within the virtual manifold but do not permit the
occupied orbitals to relax. Morokuma and Iwata28 later removed
this constraint and allowed both the occupied and virtual orbitals
to relax within their respective subspaces. In both cases, mixing
between the occupied and virtual subspaces is forbidden and
this ensures that the resulting excited states are rigorously
orthogonal to the ground state. More recently, ensemble methods
have been proposed wherein a weighted sum of the energies of
the ground and singly excited determinants is minimized.29 This
yields a single set of orbitals that are a compromise between
modeling the ground and excited states.

Such methods yield approximate excited states which are
guaranteed to be orthogonal to the corresponding approximate
ground state but which are no longer solutions of the SCF
equations. We contend, however, that the importance of
orthogonality has been overstated. Quantum mechanics requires
exact wave functions to be orthogonal, i.e., 〈Ψi|Ψj〉 ) 0, i * j,
but it makes no such demand on SCF wave functions and, in
fact, one should expect 〈Ψi

SCF|Ψj
SCF〉 * 0. Indeed, enforcing

orthogonality to an approximate wave function serves only to
propagate its shortcomings to other approximate wave functions.
With this in mind, we will abandon orthogonality and, instead,
seek genuine higher-energy solutions of the SCF equation (1.3)
and use these as models for the excited states of the system.

The existence of such solutions has been proven under modest
assumptions.30 Furthermore, if a finite basis is introduced, the
number of solutions can be very large; for example, with N
basis functions there may exist O(3N) distinct, self-consistent
solutions to the closed-shell, two-electron problem.31 But, do
the higher solutions have physical significance? The lowest
eigenvalues of Ĥ and ĤHF typically differ by less than 1% and
it is largely for this reason that HF theory (“the orbital
approximation”) has become the cornerstone of electronic
structure theory. We conjecture that this similarity also holds
for many of the higher eigenvalues and that the higher SCF
solutions may be useful approximations to the corresponding
excited states. Of course, SCF methods perform less satisfac-
torily for ground states with multideterminant character and we
expect that this will also be true for the higher-energy solu-
tions.32

The higher solutions, however, are difficult to obtain in
practice because, as noted above, most SCF algorithms are
designed to find the lowest-energy solution. This presents an
interesting challenge: is there an inexpensive systematic algo-
rithm for finding the higher solutions of the SCF equation (1.3)?
In the remainder of this Paper, we present and test a simple
protocol for choosing which orbitals to occupy at each iteration
of an SCF calculation, in order that a target SCF solution
emerges. The method, which is an alternative to the aufbau
protocol, guards against variational collapse to lower-energy
solutions of the same symmetry and frequently yields SCF
solutions that are difficult or impossible to find using traditional
SCF algorithms. We discuss the method in Section 2 and apply
it to a variety of problems including the calculation of excitation

energies, charge-transfer states, and excited-state properties in
Section 3. Spin-unrestricted calculations are used throughout.

2. Maximum Overlap Method

On each iteration of the SCF procedure, the current MO
coefficient matrix Cold is used to build a Fock (or Kohn-Sham)
matrix F and the generalized eigenvalue problem

FCnew)SCnewε (2.6)
(where S is the basis function overlap matrix) is then solved to
obtain a new MO coefficient matrix Cnew and orbital energies
ε. At that point, there are NCn ways to choose which of the new
orbitals to occupy but this large space is rarely, if ever, explored
exhaustively. Instead, one usually follows the aufbau protocol,
which dictates that one simply occupies the n orbitals with the
lowest orbital energies εj.

An alternative protocol, which we call the maximum overlap
method (MOM), states that the new occupied orbitals should
be those that oVerlap most with the span of the old occupied
orbitals. If we define the orbital overlap matrix

O) (Cold)†SCnew (2.7)
then Oij is the overlap between the ith old orbital and the jth
new orbital, and the projection of the jth new orbital onto the
old occupied space is

pj )∑
i

n

Oij )∑
ν

N

[∑
µ

N

(∑
i

n

Ciµ
old)Sµν]Cνj

new (2.8)

In this way, the full set of pj values can be found by three matrix-
vector multiplications, at O(N2) cost, and this adds negligibly
to the cost of each SCF cycle. One then occupies the n orbitals
with the largest projections pj.

To use the MOM, the SCF calculation must begin with
orbitals that lie within the basin of attraction of the target excited
solution. Often, it is sufficient to perform a ground-state
calculation and then simply promote an electron from an
occupied to a virtual orbital. If this guess is sufficiently close
to the target solution, the MOM will retain the excited
configuration as the orbitals relax during the SCF. If, on the
other hand, the guess lies outside of the basin of attraction, the
SCF will converge to another solution of the same symmetry.
In difficult cases, the quality of the guess may be improved by
using orbitals that are optimal for the (n - 1)-electron system,
or by using orbitals from another excited-state calculation.

An advantage of the MOM over other excited-state methods
is that it is possible to single out a particular state without having
to compute all lower energy states of the same symmetry. This
could be useful, for example, when targeting excited states of
a molecule in the presence of explicit solvent or when adsorbed
onto a surface.33 However, if several excitations are required,
then we adopt a systematic approach to obtaining the states.
Initial guesses are obtained by converging the ground state of
the system and considering all single excitations of active
electrons into low-lying virtual orbitals. Additional SCF calcula-
tions using each of these initial guesses are carried out using
the MOM to converge the calculation to the solution closest to
each guess. In this way, it is possible to obtain many excited
states without requiring detailed knowledge of their electronic
structure. This “black box” approach allows the MOM to be
used in a similar way as CIS or TD-DFT.

Our approach is applicable to both HF and DFT calculations,
the only difference being whether the one-electron operator fˆ(r)
in eq 1.2 includes the functional derivative of an exchange-
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correlation density functional.34 As a result, the MOM allows
direct DFT calculations of excited states and thus offers a facile
alternative to TD-DFT. The MOs obtained using the MOM can
also be used in post-SCF methods, such as MP2, to model the
correlation energy of the excited states. The computational cost
of using the MOM is the same as that of the corresponding
ground-state method (i.e., HF, DFT, or MP2) per excited state.
This is the same as the conventional analogues CIS, TD-DFT,
and CIS(D), however, an advantage of our approach is that the
memory requirements remain constant and do not scale with
the number of states.

3. Applications

The MOM has been implemented within the Q-Chem 3.0
package35 and was used to generate the results in this section.
Because excited-state electron densities can be much more
diffuse than their ground-state analogues, it is important to use
basis sets with added diffuse functions. In the case of DFT
calculations (using either TD-DFT or MOM) it is also essential
to use a quadrature grid that is large enough to integrate these
diffuse densities.36 All the DFT results in the following sections
have employed the large EML-(100,194) grid for calculating
exchange-correlation component of the energy.

3.1. Quasi-Orthogonality of SCF Solutions. As we noted
above, the SCF solutions for a system are eigenfunctions of
different operators and therefore cannot be expected to be strictly
orthogonal. Nonetheless, it is interesting to examine empirically
the extent to which such solutions are nearly orthogonal. The
overlap between two HF wave functions represented in the same
basis is

〈Ψi
HF|Ψj

HF 〉 ) det(Ci
†SCj) (3.9)

where Ci and Cj are the corresponding occupied MO coefficient
matrices. We have used this expression to calculate the overlaps
between the first five singlet solutions for the alanine molecule
at the HF/6-311+G(d)//MP2/cc-pVTZ level of theory, and these
results are shown in Table 1. Alanine has C1 symmetry, so all
of the overlaps are nonzero, yet none exceeds 0.13. Although
we do not artificially impose orthogonality on the states, we
find that the solutions to the SCF equations are close to being
orthogonal.

The nonzero overlap between the MOM states could lead to
spurious enhancement of transition properties such as transition
dipole moments (TDMs). To test whether or not this is the case,
we have computed the TDMs and associated oscillator strengths
for a selection of singlet transitions of the formamide molecule
and show these in Table 2. The oscillator strengths show the
transitions range from very weak to strong and show qualitative
agreement between the MOM transitions and those predicted
by CIS and TD-DFT. The A′′ states are, of course, orthogonal
to the ground state by symmetry; however, the HF 3 1A′ state
shows significant overlap with the ground state (0.107). Despite
this, the predicted transition moment is very similar to that
predicted by B3LYP (which has a much lower overlap of 0.021)

and both of these numbers lie within the range predicted by
CIS and TD-DFT.

3.2. Atomic Excitation Energies. To begin our exploration
of the MOM, we have used it to find ground- and excited-state
HF solutions for a few small atoms, using the 6-311(3+,3+)G
basis set.37 (For helium, we used the same diffuse function
exponents as for hydrogen.) The computed atomic excitation
energies are compared with accurate experimental data38 in
Table 3.

We first used the MOM to find HF solutions for the 2s, 3s,
and 4s configurations of the H atom. Because all of these share
the spherical symmetry of the 1s ground-state configuration,
they are almost impossible to find using the conventional aufbau
protocol. The MOM, in contrast, locates them easily. HF theory
is exact for one-electron systems, but only in the limit of a
complete basis set, and our excitation energy errors (+0.00,
+0.03, and +0.24 eV, respectively) therefore measure the
quality of the basis set. We conclude from these errors that
6-311(3+,3+)G is satisfactory for the 2s and 3s configurations
but inadequate for an accurate description of the 4s (and higher)
configurations, which evidently require even more diffuse basis
functions.

The ground-state configuration of the He atom is 1s2 and
Table 3 shows results for all excitations in which one of the
electrons is promoted to the 2s, 3s, or 4s orbital, to yield either
a singlet (1S) or triplet (3S) state, and we see that all six of the
HF excitation energies are too low by roughly 1.1 eV. How
can this systematic underestimation be understood? Given a
complete basis set, the only error in HF theory is its neglect of
the correlation energy Ec and this will give rise to errors in
excitation energies whenever the magnitude of Ec changes
significantly between the initial and final states. In the ground
state of helium, the two electrons are strongly correlated and
Ec ) 1.14 eV;39 in any excited state where one of the electrons
is promoted to another orbital, Ec ≈ 0. Thus, whereas HF theory
describes the excited states quite accurately, it gives an energy
that is 1.14 eV too high for the ground state and thus
underestimates the excitation energies by roughly the same
amount.

The ground-state configuration of the Li atom is 1s22s, and
Table 3 shows results for excitations in which the 2s electron
is promoted to a 2p, 3s, or 3p orbital. On the basis of the results
for the H and He atoms, and noting that the basis set quality is
high and correlation effects should be small, we expect that the
HF predictions for Li should be accurate. The results support
this expectation.

The ground-state configuration of the Be atom is 1s22s2, and
Table 3 shows results for the single excitations in which one of
the 2s electrons is promoted to a 2p or 3s orbital, and for the
double excitations in which both 2s electrons are promoted into
the 2p shell. In the case of the single excitations, the results are
comparable to those for the He atom, correlation errors leading
to systematic underestimation by more than 1 eV. The double
excitation to the 3P state gives a similar error (-0.96 eV)
because, as in the single excitations, the strongly correlated 2s2

pair is broken by the excitation. However, in the doubly excited
1D state, the two excited electrons remain strongly correlated
and, as a result, the HF excitation energy (error ) -0.15 eV)
is much more accurate.

In the light of these prototypical atomic studies, we make
two general observations:

1. Basis set errors, which are usually more pronounced for
excited states than the ground state, tend to lead to overestima-
tion of excitation energies (i.e., to positive errors);

TABLE 1: Overlaps of the Seven Lowest Singlet
HF/6-311+G(d) Solutions for the Alanine Molecule

∆E (eV) state 1 1A 2 1A 3 1A 4 1A 5 1A 6 1A 7 1A

4.60 2 1A 0.003 1
5.51 3 1A 0.021 0.053 1
6.81 4 1A 0.094 0.006 0.016 1
6.83 5 1A 0.002 0.011 0.044 0.011 1
7.01 6 1A 0.021 0.010 0.050 0.031 0.051 1
7.28 7 1A 0.068 0.006 0.082 0.014 0.125 0.081 1
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2. Correlation errors, for excitations in which an electron pair
is broken, tend to lead to underestimation of excitation energies
(i.e., to negative errors).

3.3. Molecular Excitation Energies. Tables 4-7 show
errors in a variety of vertical excitation energies of formalde-
hyde, ethylene, acetaldehyde, and acetone at the HF, MP2, and
B3LYP levels, using the MOM to obtain the single-determinant
wave functions of the excited states. We also include excitation
energies computed at the conventional CIS, CIS(D), and TD-
B3LYP levels. All energies were computed using the
6-311(2+,2+)G(d,p) basis set at MP2/cc-pVTZ optimized

geometries. The errors are computed with respect to the experi-
mental values.40-42 The overall mean absolute deviation (MAD)
of each level is summarized in Table 8.

The large MADs of CIS and HF (1.01 and 1.14 eV,
respectively) are unsurprising given that these methods ignore
electron correlation. As noted above, for excitations that involve
the breaking of an electron pair, HF systematically underesti-
mates the excitation energy by approximately the pair correlation
energy, and we observe that the HF errors are close to Ec for
the helium atom. In contrast, CIS frequently overestimates

TABLE 2: Transition Dipole Moments (a.u.), Oscillator Strengths, and Values of the Overlap with the Ground State for
Selected Singlet Excited States of Formamide Using the 6-311(2+,2+)G(d,p) Basisa

state excitation theory ∆E (eV) overlap µx µy µz f

1 1A′′ n f π* HF 4.25 0 0.000 0.000 -0.050 0.0003
B3LYP 5.22 0 0.000 0.000 0.081 0.0008

CIS 6.49 0 0.000 0.000 0.091 0.0013
TD-DFT 5.57 0 0.000 0.000 0.080 0.0009

2 1A′b π f π* B3LYP 6.29 0.024 -1.323 -0.128 0.000 0.2723
CIS 6.49 0 -0.916 -0.147 0.000 0.1879

TD-DFT 7.99 0 0.791 0.048 0.000 0.1227
3 1A′ n f 3s HF 5.78 0.107 -0.535 -0.170 0.000 0.0446

B3LYP 6.62 0.021 -0.484 -0.077 0.000 0.0390
CIS 9.65 0 0.561 0.092 0.000 0.0764

TD-DFT 6.11 0 -0.319 -0.068 0.000 0.0159
2 1A′′ π f 3s HF 5.58 0 0.000 0.000 0.219 0.0066

B3LYP 6.63 0 0.000 0.000 -0.228 0.0084
CIS 7.69 0 0.000 0.000 0.325 0.0199

TD-DFT 6.39 0 0.000 0.000 0.305 0.0145

a The TD-DFT results were computed using the B3LYP functional. b The HF π f π* transition mixes significantly with the π f 3pπ
transition and is not shown. Two states were obtained with ground-state overlaps of 0.069 and 0.005 and a combined oscillator strength of
0.1537; however, both showed considerable Rydberg character.

TABLE 3: Experimental and HF/6-311(3+,3+)G Excitation Energies (eV) of Atoms in Various Electron Configurations

atom configurationa term exptb HF deviation term exptb HF deviation

H 2s 2S 10.20 10.20 +0.00
3s 2S 12.09 12.12 +0.03
4s 2S 12.75 12.99 +0.24

He 1s2s 3S 19.82 18.74 -1.08 1S 20.61 19.29 -1.32
1s3s 3S 22.72 21.60 -1.12 1S 22.92 21.74 -1.18
1s4s 3S 23.59 22.49 -1.10 1S 23.67 22.58 -1.09

Li 2p 2P 1.85 1.84 -0.01
3s 2S 3.37 3.34 -0.03
3p 2P 3.83 3.80 -0.03

Be 2s2p 3P 2.73 1.67 -1.06 1P 5.28 3.51 -1.77
2s3s 3S 6.46 5.33 -1.13 1S 6.78 5.60 -1.18
2p2 3P 7.40 6.44 -0.96 1D 7.05 6.90 -0.15

a Valence electrons only. b Taken from the NIST webpage.38

TABLE 4: Deviations (eV) of Vertical Excitation Energies of Formaldehyde from Experimental Values

conventional MOM-based

state excitation expta CIS CIS(D) TD-B3LYP HF MP2 B3LYP
3A2 n f π* 3.50 +0.21 +0.04 -0.26 -1.05 +0.37 -0.16
3A1 π f π* 5.86 -1.07 +0.31 -0.09 -1.64 +0.35 +0.05
3B2 n f 3sa1 6.83 +1.47 -0.37 -0.46 -0.81 +0.60 +0.33
3B2 n f 3pa1 7.79 +1.28 -0.52 -0.62 -0.95 +0.46 +0.02
3A1 n f 3pb2 7.96 +1.76 -0.31 -0.50 -1.06 +0.45 +0.08
3A2 n f 3pb1 8.16 +1.15 -0.83 -1.01 -0.92 +0.52 +0.44
mean absolute deviation 1.16 0.40 0.49 1.07 0.46 0.18
1A2 n f π* 4.07 +0.46 -0.04 -0.15 -1.51 +0.03 -0.58
1B2 n f 3sa1 7.11 +1.51 -0.67 -0.64 -1.08 +0.37 +0.10
1B2 n f 3pa1 7.97 +1.40 -0.71 -0.74 -1.08 +0.35 -0.10
1A1 n f 3pb2 8.14 +1.62 -0.66 -0.95 -1.24 +0.30 -0.06
1A2 n f 3pb1 8.37 +1.13 -0.38 -0.92 -1.19 +0.33 +0.20
mean absolute deviation 1.22 0.49 0.68 1.22 0.27 0.21

a Reference 40.
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excitation energies because it does not allow the excited-state
orbitals to relax and is consequently unbalanced.

The excitation energies from TD-B3LYP are significantly
closer to experiment, and their average deviation (0.52 eV) is
similar to that reported by Hirao et al.43 TD-DFT usually
underestimates the excitation energies of diffuse or Rydberg
states because the asymptotic behavior of the exchange-
correlation potential is incorrect. On average, the MOM-based
B3LYP excitation energies (MAD ) 0.28 eV) are significantly
more accurate than the TD-B3LYP values (MAD ) 0.52 eV)
and this is a consequence of the much improved modeling of

the Rydberg states. The TD-DFT description of Rydberg states
can be improved through asymptotically corrected functionals,
and various schemes have been proposed for this,16,43-45 but
our B3LYP results are in closer agreement with experiment than
even the long-range-corrected BLYP functional.43

Overall, the MOM-based approaches provide comparable
accuracy to the corresponding response-based methods, CIS,
CIS(D) and TD-B3LYP. The largest MOM errors arise for the
1B1u (π f π*) state of ethylene, where the MP2 and B3LYP
excitation energies are too low by 1.41 and 1.84 eV, respec-
tively. The errors for the corresponding triplet excitation are
only 0.30 and 0.16 eV and the source of the error for the singlet
can be understood as follows. A single-determinant wave
function for an open-shell singlet is a mixture of the triplet state
and the true singlet state, and the associated excitation energy
lies between the excitation energy of the triplet state and the
true singlet state. Consequently, excitation energies for singlet
states will be underestimated by approximately half of the energy
difference between the respective singlet and triplet states. For

TABLE 5: Deviations (eV) of Vertical Excitation Energies of Ethylene from Experimental Values

conventional mom-based

state excitation expta CIS CIS(D) TD-B3LYP HF MP2 B3LYP
3B1u π f π* 4.30 -0.67 +0.31 +0.16 -0.92 +0.30 +0.16
3B3u π f 3s 6.98 -0.05 +0.15 -0.44 -1.10 +0.27 +0.01
3Ag π f 3pπ 8.15 -0.37 -0.05 -0.77 -1.44 +0.08 -0.18
mean absolute deviation 0.36 0.17 0.46 1.15 0.22 0.12
1B1u π f π* 7.65 +0.13 +0.43 +0.02 -1.31 -1.41 -1.84
1B3u π f 3s 7.11 +0.03 +0.12 -0.50 -1.17 +0.21 -0.08
1B1g π f 3pσ 7.80 -0.07 +0.07 -0.68 -1.23 +0.21 -0.21
1Ag π f 3pπ 8.26 -0.15 -0.07 -0.80 -1.38 +0.03 -0.23
mean absolute deviation 0.09 0.17 0.50 1.27 0.46 0.59

a Taken from ref 41.

TABLE 6: Deviations (eV) of Vertical Excitation Energies of Acetaldehyde from Experimental Values

conventional MOM-based

state excitation expta CIS CIS(D) TD-B3LYP HF MP2 B3LYP
3A′′ n f π* 3.97 +0.20 -0.07 -0.33 -1.13 +0.31 -0.32
3A′ π f π* 5.99 -0.86 +0.34 -0.13 -1.52 +0.43 +0.62
3A′ n f 3s 6.81 +1.40 -0.63 -0.72 -1.03 +0.38 +0.35
3A′ n f 3px 7.44 +1.45 -0.57 -0.81 -0.80 +0.67 +0.05
3A′ n f 3py 7.80 +1.46 -0.78 -0.47 -1.33 +0.09 +0.28
mean absolute deviation 1.07 0.48 0.49 1.16 0.38 0.32
1A′′ n f π* 4.28 +0.65 +0.06 -0.02 -1.34 +0.22 -0.49
1A′ n f 3s 6.82 +1.65 -0.68 -0.61 -0.99 +0.42 -0.17
1A′ n f 3py 7.46 +1.73 -0.62 -0.76 -0.96 +0.47 -0.25
1A′ n f 3px 7.75 +1.53 -0.41 -0.77 -1.05 +0.39 -0.23
mean absolute deviation 1.39 0.44 0.54 1.09 0.37 0.28

a Taken from ref 40.

TABLE 7: Deviations (eV) of Vertical Excitation Energies of Acetone from Experimental Values

conventional MOM-based

state excitation expta CIS CIS(D) TD-B3LYP HF MP2 B3LYP
3A2 n f π* 4.16 +0.30 -0.07 -0.34 -1.10 +0.34 -0.32
3A1 π f π* 5.88 -0.53 +0.52 +0.03 -1.26 +0.65 +0.13
mean absolute deviation 0.42 0.30 0.19 1.18 0.49 0.23
1A2 n f π* 4.38 +0.81 +0.10 +0.03 -1.24 +0.32 -0.41
1B2 n f 3s 6.35 +1.90 -0.64 -0.59 -0.81 +0.51 -0.14
1A1 n f 3py 7.41 +1.64 -0.92 -0.88 -1.01 +0.41 -0.29
1A2 n f 3px 7.36 +1.82 -0.62 -0.75 -1.11 +0.41 sb

1B2 n f 3pz 7.45 +1.71 -0.93 -0.76 -1.11 +0.39 -0.23
mean absolute deviation 1.58 0.64 0.60 1.06 0.41 0.27

a Taken from ref 42. b State could not be obtained using the 6-311(2+,2+)G(d,p) basis set.

TABLE 8: Mean Absolute Deviations of the Excitation
Energies for Formaldehyde, Ethylene, Acetaldehyde, and
Acetone

conventional MOM-based

MAD CIS CIS(D) TD-B3LYP HF MP2 B3LYP

singlets 1.11 0.45 0.59 1.15 0.38 0.33
triplets 0.89 0.37 0.45 1.13 0.39 0.22
all 1.01 0.41 0.52 1.14 0.38 0.28
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the 1B1u of ethylene, the triplet state lies 3.35 eV below the
singlet state, consistent with the 1.41 eV error by MP2.

The B3LYP energy for the second 1A2 state of acetone (Table
7) could not be obtained, and this illustrates the key difficulty
that one faces when using the MOM protocol. Several different
sets of initial guess orbitals were used to try to capture this
state but, in each case, the SCF converged to the lower-energy
1A2 (n f π*) state, indicating that the basin of attraction for
the higher state is very small for the 6-311(2+,2+)G(d,p) basis
set. Curiously, however, the higher state can easily be obtained
with the smaller 6-311(2+)G(d) basis, and was found to lie 7.56
eV above the ground state.

3.4. Charge Transfer Excitations. The failure of TD-DFT
with standard functionals to provide a satisfactory treatment of
charge-transfer states is a well-known problem.46-48 For such
states, TD-DFT underestimates the excitation energy substan-
tially and fails to yield the correct 1/R dependence of the charge-
transfer states, where R denotes the separation between the
charges. Recent work has traced this deficiency to the absence
of exact nonlocal exchange.19,20 In a charge-transfer excitation,
the electron-donating orbital ψi and electron-accepting orbital
ψa have very little overlap and, because of the self-interaction
error present in approximate exchange-correlation potentials,
the electron in ψa interacts spuriously with itself in ψi. Several
groups have proposed schemes to address this problem; Dreuw
and Head-Gordon used a hybrid approach that combines TD-
DFT and CIS,20 Tawanda et al. obtained the correct 1/R
dependence by using a long-range corrected functional43 and,
recently, Zhao and Truhlar introduced an exchange-correlation
functional that contains full HF exchange.49

MOM-based calculations of excited charge-transfer states do
not suffer from the electron-transfer self-interaction problem,
and thus offer a promising route to the study of charge-transfer
states within DFT. Furthermore, such states can also be studied
using MOM-based HF and MP2 theory. Figure 1 shows the
variation of the πC2H4f πC2F4

/ and πC2F4f πC2H4
/ charge-

transfer excitations in an ethylene/tetrafluoroethylene complex

as a function of the intermolecular separation R, computed using
HF, MP2, B3LYP, and TD-B3LYP with the 6-31G(d) basis set.
As found elsewhere,19 TD-DFT predicts that the excitation
energy is simply the energy difference between the electron-
donating and electron-accepting orbitals and is therefore almost
independent of R. In contrast, HF, MP2, and B3LYP all show
the correct 1/R dependence for both excitations.

3.5. Structure and Spectroscopy of Excited States. Theo-
retical methods for determining the equilibrium structures and
vibrational frequencies of molecular ground states are well
developed. Efficient optimization of molecular structures re-
quires analytical first derivatives of the energy and, through
additional programming effort, these derivatives have become
available for excited-state methods such as CIS,13 TD-DFT,50

CASPT2,51 and EOM-CCSD.52 An advantage of computing
excited states within the MOM framework is that ground-state
code can be applied directly to excited states. This provides a
computationally inexpensive approach for determining excited-
state structures without the need for additional programming
effort. Likewise, ground-state methods whose analytical second
derivatives are available can be applied to compute vibrational
frequencies for excited states.

Table 9 shows the optimized geometric parameters for the
ground and three low-lying excited states of formaldehyde
obtained using the MOM approach with HF, MP2, and B3LYP.
Experimental values (where available) or accurate EOM-CCSD
values are also shown for comparison. All three approaches give
very accurate predictions of the ground-state structure and there
is only a slight degradation in performance of HF and MP2 for
the 1A′′ (n f π/) and 1B2 (n f 3sa1) excited states. B3LYP
completely fails to capture the 1B2 state, predicting an almost
linear H-C-H angle, and it also has the worst predictions for
the 1A′′ state. All three theories give good values for the C-O
bond lengths in these two states, and predict the correct
nonplanar structure for the 1A′′ state, although the out-of-plane
angle is slightly overestimated in each case.

The computed geometries are poorest for the 1A1 (π f π*)
state with all three methods significantly underestimating the
C-O bond length. It was noted in Section 3.3 that single-
determinant methods perform poorly for open-shell singlets
where the singlet-triplet gap is large. This is the case for the
π f π* transition in formaldehyde where the gap is ap-
proximately 4 eV. The C-O bond length in the singlet (1.583

Figure 1. Variation of the πC2F4f πC2
/H4 (lower panel) and πC2H4

f πC2F4
/ (top panel) excitation energies of the C2H4 · · ·C2F4 complex

with intermolecular separation R. The following shifts (in eV) were
applied so that the curves intersect at R ) 4.5 Å. Upper panel: HF,
-10.02; B3LYP, -11.19; MP2, -11.34; TD-B3LYP, -7.58. Lower
panel: HF, -10.35; B3LYP, -10.01; MP2, -10.53; TD-B3LYP,
-6.63.

TABLE 9: Optimized Structural Parameters for the Given
States of Formaldehyde

state parameter acca HF MP2 B3LYP

(G.S.)b r(C-O) (Å) 1.203 1.180 1.212 1.202
r(C-H) (Å) 1.101 1.094 1.104 1.108
∠HCH (deg) 116.3 116.1 116.0 116.0
∠OOPc (deg) 0.0 0.0 0.0 0.0

1A′′ (n f π*)b r(C-O) (Å) 1.323 1.340 1.328 1.310
r(C-H) (Å) 1.098 1.079 1.090 1.099
∠HCH (deg) 118.8 119.6 118.4 115.7
∠OOP (deg) 34.0 35.4 37.3 37.9

1A1 (π f π*)d r(C-O) (Å) 1.583 1.393 1.459 1.453
r(C-H) (Å) 1.095 1.075 1.082 1.084
∠HCH (deg) 119.6 121.3 125.8 123.1
∠OOP (deg) 0.0 0.0 0.0 0.0

1B2 (n f 3sa1)d r(C-O) (Å) 1.198 1.206 1.194 1.206
r(C-H) (Å) 1.131 1.102 1.141 1.378
∠HCH (deg) 120.7 123.9 124.9 167.2
∠OOP (deg) 0.0 0.0 0.0 0.0

a Accurate values taken from ref 53. b Experimental values.
c Out-of-plane angle. d EOM-CCSD values.
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Å53) is very different from that in the triplet (1.423 Å54) and
we see that the MP2 and B3LYP bond lengths fall between
these two values, reflecting the mixing of the two spin states
that occurs in the single-determinant treatment of an open-shell
singlet.

The availability of analytic second derivatives for HF and
DFT methods allows harmonic vibrational frequencies to be
computed for the MOM-based excited states of large systems.
Time-resolved infrared spectroscopy is used to measure the
infrared spectroscopy of excited states and calculations can often
assist in the interpretation of the spectra obtained. Aromatic
carbonyl compounds have diverse photophysical and photo-
chemical properties arising from the close proximity of the
singlet and triplet nf π* and πf π* transitions.55 IR spectra
have been measured for the S1 and T1 states of fluorenone,56

and these show the CO stretch frequency to be 1600 cm-1 in
the T1 state, with weaker bands at 1516 and 1476 cm-1, while
in the S1 state the CO stretch frequency is at 1544 cm-1, with
weaker bands at 1496 and 1400 cm-1. These results indicate
that both the S1 and T1 states are of π f π* character. Figure
2 shows the structure and relevant molecular orbitals of
fluorenone with symmetry classifications within the C2V point
group. A number of low-lying excited states can be generated
by the excitations 18b1 f 5b2, 3a2 f 5b2, and 4b2 f 5b2. In
more familiar notation, the 5b2 orbital can be regarded as the π*
orbital, and the 18b1 and 4b2 are n and π in character. The 3a2

orbital also has π character and is located on the rings. The
three excited states can be denoted nπ*, a2π*, and ππ*,
respectively.

The MOM allows the IR spectrum for arbitrary excited
states to be evaluated and, through comparison of the
computed spectra with experiment, the nature of the excited-
state determined. We have computed the IR spectra for the
triplet and singlet a2π*, nπ*, and ππ* excited states of
fluorenone. The frequencies were computed using B3LYP/
6-31G(d) and were scaled by 0.9614.57 The spectra were
generated by representing each vibrational frequency by a
Gaussian function, with the bandwidth determined by the
computed intensity. Bandwidths of 2, 3, 4, 5, and 6 cm-1

were used for intensities in the ranges <10, 10-20, 20-30,
30-150, and >150 km mol-1, respectively, since these were
found to give the best graphical agreement with the experi-
mental results. The resulting spectra are shown in Figure 3.

The computed spectra for the three triplet states are all
significantly different. The experimental spectrum agrees well
with the computed spectrum for the 3a2π* state but not those
for the 3nπ* or 3ππ* states. In particular, the computed CO
stretching frequency (1598 cm-1) in the 3a2π* state almost
exactly matches the experimental value (1600 cm-1), indicating
that the lowest triplet state involves an a2 f π* excitation. A

similar analysis for the excited singlet states shows that the
lowest singlet is also an a2 f π* state and the computed CO
stretch (1552 cm-1) compares well with the experimental value
(1544 cm-1).

4. Conclusions

We have introduced a simple strategy that yields excited-
state solutions of SCF equations by using a novel method for
determining which orbitals to occupy on each SCF cycle. The
excitation energies computed using our method with the HF,
MP2, and B3LYP levels of theory are competitive with their
conventional analogues, CIS, CIS(D), and TD-DFT. Further-
more, our approach has several advantages over these conven-
tional methods; it is easy to implement, it inherits the analytic
energy derivatives from ground-state theory, and it yields a
simple single-determinant wave function and density that are
easy to interpret.
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